
Cloud computing broke password hashing

Rais Mense (2510240)

May 6, 2013

Abstract

The advent of cheap cloud computing resources has given the general
public access to computational resources that were limited to a just select
few individuals no more than a few years ago. Now that this power is
available to anyone who wants it we should take a look at how this affects
the security of commonly used password hashing algorithms. A password
hash is only useful if it takes longer to crack than the time the password is
valid, and this balance is now shifting for a number of hashing algorithms.
We will not only look at specific algorithms but also draw some conclusion
about why some do hold up while other don’t and what the fundamental
properties are that enable this.

1 Introduction

As long as people have stored personal information on their computers there has
been a need for passwords to protect them. The conventional way of securely
storing passwords on any computer system always was, and still is through
password hashing. A cryptographic algorithm is applied to the password the
user enters, resulting in a hash that cannot be reversed back to its original
password. Almost as soon as passwords were being stored in hashes people
have tried to get the original password back from the hash for a number of
reasons, both good and bad. The crucial factor for encryption has always been
that the time required to break the encryption should be longer than the time
that the encrypted data is useful. It then logically follows that a password
hashing algorithm is only as good as the computing power required to get the
original password back. For the purposes of this paper we will consider a hashing
algorithm broken when its hashes can be cracked within a time space where it
is likely to still be useful.

1.1 Clouds

With the rise of cloud computing it is becoming increasingly easy for anyone
to have access to very large amounts of computing power on demand for a
relatively low cost. For just over $2 an hour anyone with a valid credit card
can go to Amazon and make use of one of their very powerful GPU accelerated
machines delivering a peak performance of about a Teraflop for double precision
operations. This is a scale of computing power that was previously impossible
to get access to without spending hundreds if not thousands on the hardware.

1

Previously only large institutions had access to these kinds of resources and
the people who could run a password hash cracking job at their leisure on such
systems were few and far between. Now that this power is available to most
people, we need to re-evaluate the usefulness of some commonly used hashing
algorithms to see if they should still be used or not.

1.2 Hashing algorithms

Not all types of password hashing are equally susceptible to increasing comput-
ing power. In this paper we will focus on a set of four commonly used hashing
algorithms.

The md5 hashing algorithm has long been used for both password hashing
and data integrity checks. In recent years the md5 algorithm has suffered several
setbacks and is no longer considered appropriate for password hashing[1][2],
however given its long history of usage and that in spite of these recent findings
it is still being commonly used we will include it in our examination.

The sha-1 algorithm is commonly considered a suitable replacement for ap-
plications where md5 is currently being used as the password hashing algorithm.
In practice this turns out to not be the case as sha-1 has itself been broken since
2005.[2] Again, we will still include it for its common usage.

The NTLM hashing algorithm was developed by Microsoft as a replacement
for their LM hashing algorithm. Though the NTLM algorithm has success-
fully resolved many of its predecessors shortcomings it has still been viewed in
some negative light, not over cryptographic algorithm itself but rather for it’s
implementation. It is currently being used as the default hashing algorithm
for all modern Windows operating systems and will thus be included in our
examination for its wide spread usage.

The final hashing algorithm will be bcrypt which is an implementation for
password hashing based on the general purpose blowfish algorithm which was
written to serve as an alternative to the DES encryption algorithm.[3] It is cur-
rently commonly used as the password hashing algorithm for several Unix and
Linux operating systems. The bcrypt implementation is generally considered to
be one of the few ”best practice” methods for password hashing [1] so it should
be included in our examination.

2 Attacking the hashes

2.1 Method of attack

There are many methods to attack hashed passwords. Some common meth-
ods include generating hashes from a list of passwords or a dictionary, using
precomputed rainbow tables to look up the hash and its corresponding value
and a brute force attack that iterates through each possible combination of a
set of characters. We will be focusing on the brute force attack as it is at the
root of the other two attacks. The dictionary attack is essentially pruning less
likely combinations where the rainbow table does a brute force attack in ad-
vance and stores the results in a look-up table. We have discarded the rainbow
table method here because it will not work against salted passwords and bcrypt
hashes are always salted so the comparison to the other hashing algorithms

2

would not result in a fair comparison. The dictionary attack may also be used
to evaluate the hashing functions in a fair comparison for computation time
however we will not be using it as to avoid the possibility of introducing any
bias by the words included in or excluded from the dictionary. As our example
for modern hash cracking tool we will use an application called ”oclHashcat”
which was designed to run on highly parallel processors such as GPUs. It it
also capable of attacking all four of the hash types we will be looking at thus
eliminating any variance introduced by the implementation as much as possible.
This program will also allow for the cracking of salted md5 and sha-1 hashes.
The figures for the performance of oclHashcat for each type of hash are known
and have been published on their website. We will use these figures as a starting
point to evaluate how long it would take to crack a password.

2.2 The figures

The oclHashcat benchmarks include a benchmarks for a PC with an NVIDIA
GTX 560 Ti GPU, which is a relatively close match in performance for the cards
used in the Amazon EC2 GPU accelerated instances. As an Amazon EC2 in-
stance has two of these GPU based accelerators we can simply double the figures
for the oclHashcat benchmark, assuming that the performance scales roughly
linearly. It is possible that the real world scaling does not quite match this per-
formance but this would be a matter of the implementation or a consequence of
the two cards sharing some of their other resources like an IO bus. This is not
a concern as the orders of magnitude difference between the hash types does
not change. We could also simply run the application on two instances if the
scaling should prove to be dramatically less than linear, albeit at the expense of
doubling our cost of course. The following table lists the measured and expected
number of cryptographic operations or attempted password cracking tries per
second for each hash type. The expected EC2 numbers are rounded down.

Hash type oclHashcat benchmark Expected EC2 performance
MD5 1.345×109 2.6×109

SHA-1 4.33×108 8×108

NTLM 1.641×109 3.2×109

bcrypt 604 1200

We can see that the number of attempts we’ll be able to make on bcrypt is sig-
nificantly lower than for the other hashing algorithms. In the following sections
we will see if this translates to a real-world benefit or if in spite of increased
computational power required the attack is still going to be short enough to be
useful.

2.3 The math

In this section we will present the calculations we will use to determine how long
it should take to crack a hash. The search space for a password will be defined
as all possible combinations of characters in the character set for the full length
of the password. To calculate the search space we just do searchspace = cl

with c as the number of characters in the character set and l the length of the
password.

3

The following table lists the five passwords we will be looking at for our
examples, each with different properties.

Password Character set Search space Password type
password [a-z] 268 Simple
PassWord [a-zA-Z] 528 Mixed case
P4ssW0rd [a-zA-Z0-9] 628 Alpha numeric
P4$$W0rd [:all:] 958 Full key space
passwordpassword [a-z] 2616 Long password

It is interesting to note that the common concept of adding numbers and special
characters is not as effective for creating a large search space as having a longer
but simple passphrase. Even a simple password of 16 characters will give a
larger search space than a complex password of eight.

If we calculate the search spaces for all the characters in the set from length
1 to the length of the password and sum those we will have the cumulative
search space for that password. When we take half of the search space and
add to that the cumulative search space for password length-1 we will have a
reasonable approximation to the number of tries it will on average take to crack
a password of that length.

We can calculate the maximum time in seconds it should take to crack each
hash using the function:

Smax =

l∑
i=1

ci

a

Where c is the size of the character set, l is the length of the password and a is
the number of attempts we make to crack the hash every second. However for
the sake of simplicity we will be using the function

Smax =
cl

a

which discards the computational time for all preceding characters. As every
following character takes an order of magnitude longer than the preceding one it
will still give us a reasonable indication of how long it will take. The preceding
characters may take a long time, but they will not add significantly to the total
time anymore. The following graph illustrates that the search space increases
exponentially with every extra character. Note that the Y-axis is logarithmic.

4

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1e+14

 1e+16

 1 2 3 4 5 6 7 8 9 10

S
e

a
rc

h
 s

p
a

c
e

Characters

Search space size for x characters

26**x

Now we simply divide by two in order to get the average amount of seconds it
will take to crack a hash: Savg = Smax

2 . Using these functions we can construct
the following tables. All times in seconds have been rounded to the nearest
second.

”password”
Algorithm Smax Savg Human readable time
MD5 80 40 40 seconds
SHA-1 261 130 2 minutes
NTLM 65 33 33 seconds
bcrypt 174022554 87011277 2.7 years

”PassWord”
Algorithm Smax Savg Human readable time
MD5 20561 10281 Just under 3 hours
SHA-1 66825 33412 Just over 9 hours
NTLM 16706 8353 Just under 2 and a half hour
bcrypt 4.4550×1010 2.2275×1010 About 706 years

”P4ssW0rd”
Algorithm Smax Savg Human readable time
MD5 83977 41988 11 and a half hour
SHA-1 272925 136463 About a day and a half
NTLM 68231 34116 About 9 and a half hours
bcrypt 1.8195×1011 9.0975×1010 About 44 centuries

5

”P4$$W0rd”
Algorithm Smax Savg Human readable time
MD5 2551617 1275809 Just under 15 days
SHA-1 8292755 4146378 Just over 19 days
NTLM 2073189 1036594 Almost Almost 12 days
bcrypt 5.5285×1012 2.7643×1012 About 88 centuries

”passwordpassword”
Algorithm Smax Savg Human readable time
MD5 1.6772×1013 8.3863×1012 Almost 266 centuries
SHA-1 5.4511×1013 2.7255×1013 Just over 864 centuries
NTLM 1.3628×1013 6.8139×1012 About 216 centuries
bcrypt 3.6341×1019 1.8170×1019 About 576 million centuries

The differences between cracking times for the different algorithms are quite
extensive and in many cases several orders of magnitude apart. In the next
section we will try to draw some general conclusions about what this means for
the hashing algorithms and how they should be used.

3 Conclusion

From the results of our calculations we can see that cracking even fairly com-
plex passwords can be done in a reasonable amount of time. We can also see
that longer passwords are extremely effective at increasing the cracking time.
Therefore the fact that both md5 and sha-1 can be implemented using salts
gives them a significant advantage over NTLM which is generally only used in
the Windows operating system under an implementation where salting is not
used. Though the NTLMv2 standard does employ salting when sending hashes
over the network for remote login, the hashes being stored are still not salted.
Bcrypt requires a salt to be used at all times which is part of the reason why
it is so difficult to crack. However that is not the only reason bcrypt preforms
so well. The main reason why it takes so long is the configurable cost variable
bcrypt uses. This is set to a cost of ten by default in most implementations,
including the one on which our figures are based. This gives a reasonably secure
hash as we can see from our calculations. Even fairly simple passwords cannot
be cracked in a realistic amount of time. On the surface it would seem that
a good implementation of the md5 or sha-1 algorithm with the use of a salt
could easily push them back into the territory of being completely unrealistic
to crack in any reasonable time span. Unfortunately there is a fundamental
problem associated with this type of hashing algorithm. As computing power
keeps growing we would need to have every persons password rehashed every so
often in order to implement ever longer salts. Bcrypt can solve this problem as
it was designed to have its cost included in the hash so when checking the hash
against a password the cost associated with that specific hash is known. When
it seems prudent to create stronger passwords hashes a rolling update can be
done by simply updating the cost value used to create new hashes. Because
the cost with associated with each hash may be different, higher costs can be
implemented without the need to have all password hashes updated at once.
There is also another common problem with using salts in that they are often
stored with the password hash so if the hash is known in most cases the salt

6

is too, making the computation only trivially more expensive than it would be
with no salt at all.

Though both md5 and sha-1 are considered cryptographically broken now[2],
the principle applies to all hashing algorithms that do not have some way to
dynamically configure their cost. Even if they are still strong enough now it is
only a matter of time before increased access to computing power will put them
within reach for brute force cracking too.

In conclusion, easy access to cloud computing resources did break password
hashing, and will continue to break ever more hashing algorithms as time goes
on. But not every hashing algorithm will eventually fall prey to increased avail-
ability of resources. As the resources we are able to put towards cracking their
hashes grow they can simply increase the cost of their algorithms accordingly.

4 Future research

In this paper we have only considered the case where we are trying to attack a
single hash. However in real life we often see cases where large lists of usernames
and password hashes fall into the wrong hands. In such a scenario there is a
matter of probability to contend with as many passwords will be short and based
on dictionary words. Even if many passwords may take a long time to crack,
often a small subset of all passwords being cracked can lead to serious problems.
Thus it should be useful to employ some statistical experiment to find out how
the use of different hashing algorithms may help to reduce the percentages of
how many passwords are likely to be compromised.

References

[1] S. Boonkrong, “Security of passwords,” 2012.
http://suanpalm3.kmutnb.ac.th/journal/pdf/vol16/ch17.pdf.

[2] J. B. et al, “All in a day’s work: Password cracking for the rest of us,” 2009.
http://www.unimed.sintef.no/upload/IKT/9013/dayswork.pdf.

[3] N. Provos and D. Mazières, “A future-adaptable password scheme,” 1999.
http://static.usenix.org/event/usenix99/provos/provos.pdf.

7

